openpilot 是 comma 公司开源的一个自动驾驶辅助系统,包含 软件 和 硬件 两部分,其中软件和第一代硬件都是开源的,可以在 github 上找到。

Openpilot 的主要特性包括哪些?

Openpilot 官方版本支持 车道保持 、ACC巡航自动辅助变道

车道保持:控制方向盘,使车辆保持在左右两车道正中间。

ACC巡航:检测前车、障碍物,根据前车速度调节车速(油门、刹车),与前车保持安全距离。

自动辅助变道:当驾驶员需要切换车道时,需要打开转向灯(常亮),确认变向车道安全后,然后朝变道方向轻推方向盘,车辆将驶向旁边车道,变道完成后,需要驾驶员关闭转向灯。

  • 0.6.4 之后的版本在测试过程中发现,如果没有车道线情况下,会跟随前车轨迹行驶

Openpilot 和雅阁原厂 Honda Sensing 对比测试

该技术利用人工智能对人脸进行更换,声音进行合成,几乎以假乱真。


Youtube视频: This AI Makes “Audio Deepfakes” – YouTube





视频描述:

Check out Weights & Biases and sign up for a free demo here: https://www.wandb.com/papers

The paper “Neural Voice Puppetry: Audio-driven Facial Reenactment” and its online demo are available here:
Paper: https://justusthies.github.io/posts/n…
Demo – **Update: seems to have been disabled in the meantime, apologies!** : http://kaldir.vc.in.tum.de:9000/

Watch these videos in early access on our Patreon page or join us here on YouTube:
https://www.patreon.com/TwoMinutePapers
https://www.youtube.com/channel/UCbfY…

We would like to thank our generous Patreon supporters who make Two Minute Papers possible:
Alex Haro, Alex Paden, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Benji Rabhan, Brian Gilman, Bryan Learn, Daniel Hasegan, Dennis Abts, Eric Haddad, Eric Martel, Evan Breznyik, Geronimo Moralez, James Watt, Javier Bustamante, Kaiesh Vohra, Kasia Hayden, Kjartan Olason, Levente Szabo, Lorin Atzberger, Lukas Biewald, Marcin Dukaczewski, Marten Rauschenberg, Maurits van Mastrigt, Michael Albrecht, Michael Jensen, Nader Shakerin, Owen Campbell-Moore, Owen Skarpness, Raul Araújo da Silva, Rob Rowe, Robin Graham, Ryan Monsurate, Shawn Azman, Steef, Steve Messina, Sunil Kim, Taras Bobrovytsky, Thomas Krcmar, Torsten Reil, Tybie Fitzhugh.
https://www.patreon.com/TwoMinutePapers

Meet and discuss your ideas with other Fellow Scholars on the Two Minute Papers Discord: https://discordapp.com/invite/hbcTJu2

Károly Zsolnai-Fehér’s links:
Instagram:
https://www.instagram.com/twominutepa…
Twitter:
https://twitter.com/karoly_zsolnai
Web:
https://cg.tuwien.ac.at/~zsolnai/

这两年人工智能很吃香,今年的人工智能应届博士年薪甚至有高达80万,而且很稀缺。我一向对此感兴趣,于是查找了一下西工大的博士研究生招生。现在将资料放此,以备查看。

西北工业大学研究生招生信息网:http://yzb.nwpu.edu.cn/new/sy.htm

招生简章:http://yzb.nwpu.edu.cn/info/1180/6927.htm

专业招生目录:http://yzb.nwpu.edu.cn/info/1182/6926.htm

有关的几个方向:

本文大概描述了机器学习领域之外的人如何转行到机器学习领域内。说得很详细。

下文转载自CSDN:http://blog.csdn.net/qq_40027052/article/details/78542679?locationNum=3&fps=1


在计算机行业,关于从业人员的素质,一直都有一个朴素的认识——科班出身好过非科班,学历高的好过学历低的。大部分时候,这个看法是对的。在学校学习,有老师指点,有同学讨论,有考试压迫,有项目练手。即便不大用心的学生,几年耳濡目染下来,毕业后作为半个专业人士,还是没什么问题的。

不过,量子物理告诉我们,这个世界的本质要看概率。所以,科班出身的同学,在技术上好过非科班出身的同学,这是大概率事件;相反,非机器学习专业,甚至非计算机专业的同学,在这个领域做的比本专业同学更好,则就是小概率事件了。但小概率事件并非“不可能事件”,国内很多做机器学习公司的CTO,都不是机器学习专业的科班出身,却能够抓住这里的“小概率”,让自己华丽地转身并实现弯道超车。

他们是怎么做到的?

如果在上学的时候,我们没能嗅到机器学习领域的机会,而是选择其他领域来学习和工作……如今却打算半路出家、改行机器学习,应该怎么做,才能做到跟这些人一样好?或者,至少是足够好?

我自己痛苦转型的经历,说出来可以供大家参考一下。

我也是非科班出身,但因为工作,一直需要接触计算机视觉的一些传统算法。后来,看到ImageNet竞赛的结果,我意识到了深度学习在视觉领域的巨大优势,遂决定开始转型深度学习和神经网络,走上了这条学习的不归路(笑)。

想要转型,跟上学的时候不同,因为手头正在做的工作意味着,自己需要从没有时间的情况下挤出时间,需要把别人睡觉、打游戏的时间用来学习,而所学的又是一种颇为艰深晦涩的学问。

转型,其实很容易,需要做到的只有一件事:学习。

转型,其实很困难,因为必须做到一件事:坚持学习。

最难的不是下定决心,而是贯彻到底。所以,在开始之前,不妨先问问自己这样几个问题:

“我真的已经想清楚,要踏足这个行业吗?”
“我能够付出比其他人更多的辛苦汗水,在这条路上坚定地走下去吗?”
“在遭受了痛苦甚至打击之后,我对机器学习的热爱,仍然能够维持我继续前进吗?”

根据我掌握的数据,100个程序员里大概有30个考虑过转型,而真正付诸行动的不过10个。一个月以后仍然在坚持的仅有5个,最终能完成第一个阶段学习的,最多两三个而已。

真的这么困难吗?是的。特别是你要白天上班,晚上才能学习,独学而无友,有问题又只能自己查。而要系统地入门,又不是咬牙一天两天就能学出来,恐怕得坚持几个月才能get到点。

我个人的经历是这样:一开始接触时,每周一、三、五固定3天时间,每晚花两个小时去学习、看视频、翻书,周六周日则用来完成课程附带的编程作业,大概也是每天两小时左右。在这种强度下坚持了三个月,我才算是完成了入门的第一步。

也许有的人效率更高一些,也许有的人步子更慢一些,但快和慢不是关键,即使学习最慢的人,也要比一开始放弃学习的人走得更远。

所以,其实真正重要的,不是“我该学什么”,或者“我该怎么学”;而是“我是不是真的有足够的决心”,以及“我是不是能坚持到底”。

上手的课程

定好决心后,我们就能看看:在学机器学习的时候,我们到底在学什么?

几乎所有人都知道人工智能这个概念;有一部分人知道“机器学习”这个概念;其中一小部分人能清楚描述“深度学习”、“机器学习”和“神经网络”的关系; 很少一部分人能够正确说明“卷积”、“池化”、“CTC”这些名词的正确含义与计算/实现的方法;非常少的人能清楚地理解损失函数和反向传播的数学表达;极少极少的人能够阐述网络的一个修改(比如把卷积核改小)对precision/recall会产生什么影响;几乎没有人能描述上述影响到底是什么原理。

阅读全文

微型无人机携带炸药可以杀人。

这并不是危言耸听 伯克利大学教授在联合国大会上展示了“AI杀人蜂”机器人 搭载人脸识别、传感器以及3克炸药 可以在人群中精确定位到需要干掉的人 杀人成本极其低廉 同时教授警告:该项技术已经成熟 要警惕落入恐怖分子之手(感谢阿尔法小分队译制,网易公开课编辑整理)

本视频来自网易公开课 http://open.163.com/movie/2017/11/0/9/MD32SIIIB_MD32SJS09.html

这是视频最后给出的“防止这种悲剧发生的”公益网站:http://autonomousweapons.org/

我也相信机器人一定会与人类共享世界,甚至取代人类。

转载自:https://zhuanlan.zhihu.com/p/29309218

Python深度学习完全路线指南

介绍

深度学习目前已经成为了人工智能领域的突出话题。它在“计算机视觉”和游戏(AlphaGo)等领域的突出表现而闻名,甚至超越了人类的能力。近几年对深度学习的关注度也在不断上升,这里有一个调查结果可以参考。

这里有一个 Google 的搜索趋势图:

深度学习:Python深度学习完全路线指南[转载]

如果你对这个话题感兴趣,这里有一个很好的非技术性的介绍。如果你有兴趣了解最近的趋势,那么这里有一个很好的汇总

在这篇文章中,我们的目标是为所有深度学习的人提供一条学习之路,同时也是为想要进一步学习的人提供一条探索的路径。如果你准备好了,那么让我们开始吧!

步骤0:先决条件

建议在学习深度学习之前,你应该先了解一些机器学习的基础知识。这篇文章列出了完整的学习机器学习的资源。

如果你想要一个简单的学习版本。那么可以看下面的列表:

建议时间:2-6个月

步骤1:机器配置

在进行下一步学习之前,你应该确保你有一个支持你学习的硬件环境。一般建议你至少拥有以下硬件:

  • 一个足够好的 GPU(4 GB),最好是 Nvidia
  • 一个还可以的 CPU(比如:Intel Core i3,Intel Pentium 可能不适合)
  • 4 GB RAM(这个取决于数据集大小)

如果你还不确定,那么请阅读这个硬件指南

备注:如果你是一个硬件玩家,那么你可能已经拥有了所需的硬件。

如果你没有所需的规格,那么你可以租一个云平台来学习,比如 Amazon Web Service(AWS)。这是使用 AWS 进行深度学习的良好指南

备注:在这个阶段不要安装任何深度学习的库,安装过程我们会在步骤 3 中介绍。

步骤2:初试深度学习

现在,你已经对这个领域有了一个初步的认识,那么你应该进一步深入了解深度学习。

根据自己的偏好,我们可以选择以下几个途径:

除了上述的先学知识,你还应该了解一些流行的深度学习库和运行他们的语言。以下是一个不太完整的列表(你可以通过查看 wiki 获得更加完整的列表):

其他一些著名的库:MochaneonH2OMXNetKerasLasagneNolearn。关于深度学习语言,可以查看这个文章

你也可以查看查看 Stanford 的 CS231n 中的第 12 讲,概要性的了解一些深度学习库。

建议时间:1-3周

步骤3:选择你自己的领域

这是最有趣的部分,深度学习已经应用在各个领域中,并且取得了最先进的研究成果。如果你想更深入的了解,那么作为一个读者,你最适合的路径就是动手实践。这样才能对你现在了解的内容有一个更加深入的认识。

注意:在以下的每个领域中,都会包括一个博客,一个实战项目,一个需要的深度学习库以及一个辅助课程。第一步你应该学习一下博客,然后去安装对应的深度学习库,然后再去做实战项目。如果在这个过程中,你遇到什么问题,那么可以去学习辅助课程。

建议时间:1-2个月

步骤4:深挖深度学习

现在你应该已经已经学会了基础的深度学习算法!但是前面的路程会更加艰苦。现在,你可以尽可能高效的利用这一新获得的技能。这里有一些技巧,你应该做的,可以磨炼你的技能。

建议时间:无限

值得推荐的资源:

结语

希望这个学习路径可以帮到你。我已经尽力让它更加全面,现在你要做的,就是尽可能多的阅读和练习。想要获取神经网络的专业知识,请尝试深度学习的练习题:Identify the Digits

当你对深度学习的概念有一些了解之后,试一下Skilltest: Deep Learning。试着接受深度学习的观念。

好运!

—————————————————————————————————————

为了方便大家学习,我建立了一个Python交流群,目前群内已经有1615个小伙伴,学习寂寞的小伙伴不妨一起来玩~群号:475035830

2017年8月30日,网易公开课上线了吴恩达的《深度学习》课程。

吴恩达简介:

吴恩达博士是Google Brain项目的发起人和领导者,斯坦福大学的计算机科学教授,Coursera的联合创始人和联合主席。他还曾任百度的副总裁和首席科学家,在这里,他领导了约1300人的人工智能团队,并负责百度的国际人工智能战略和基础建设。由 deeplearning.ai 出品,网易引进的正版授权中文版深度学习工程师微专业课程,让你在了解丰富的人工智能应用案例的同时,学会在实践中搭建出最先进的神经网络模型,训练出属于你自己的 AI。


在网易的课程主页:https://study.163.com/topics/deepLearning/

吴恩达的 Deep Learing 学习网官网:https://www.deeplearning.ai/

课程简介:

吴恩达的汉语说的还真不错!佩服。

元胞自动机(Cellular Automaton,复数为Cellular Automata,简称CA,也有人译为细胞自动机、点格自动机、分子自动机或单元自动机)。是一时间和空间都离散的动力系统。散布在规则格网 (Lattice Grid)中的每一元胞(Cell)取有限的离散状态,遵循同样的作用规则,依据确定的局部规则作同步更新。大量元胞通过简单的相互作用而构成精态系统的演化。由冯诺依曼在20世纪50年代发明。

一开始是二维的,后来发展到三维,多维。

两张图片展示一下:

二维:

知识:元胞自动机

三维:

元胞自动机本来是研究在一定规则下元胞的演化的,而且得出了很多有价值的结论。比如参看文章:这个游戏没有玩家,为何在学术圈火了半个世纪?

今天还了解到,元胞自动机已经被使用到各个方面。我关心的是在物理学中的应用。

百度百科介绍到:“除了格子气元胞自动机在流体力学上的成功应用。元胞自动机还应用于磁场、电场等场的模拟,以及热扩散、热传导和机械波的模拟。另外。元胞自动机还用来模拟雪花等枝晶的形成。”

还有一个文章详细讲解了元胞自动机,很生动:http://www.swarma.org/complex/models/ca/ca1.htm

有人给出了二维元胞自动机的一个C++开源例子,原文链接:访问。我分享一下运行视频:

 

我在arXiv.cn上搜索得到的结果:https://arxiv.org/find/all/1/all:%20AND%20Cellular%20Automaton/0/1/0/all/0/1?client_host=cn.arxiv.org

有几个我很有兴趣:

1. Von Neumann Regular Cellular Automata  arXiv:1701.02692

2. Morphognosis: the shape of knowledge in space and time  arXiv:1701.02272

3. Neighborhood-History Quantum Walk  arXiv:1611.07495

4. Quantum cellular automata and free quantum field theory  arXiv:1608.02004

5. Particle models with self sustained current  arXiv:1606.04920

6. Neighborhood approximations for non-linear voter models  arXiv:1604.07778